4 research outputs found

    Estimating the feasibility of transition paths in extended finite state machines

    Get PDF
    There has been significant interest in automating testing on the basis of an extended finite state machine (EFSM) model of the required behaviour of the implementation under test (IUT). Many test criteria require that certain parts of the EFSM are executed. For example, we may want to execute every transition of the EFSM. In order to find a test suite (set of input sequences) that achieves this we might first derive a set of paths through the EFSM that satisfy the criterion using, for example, algorithms from graph theory. We then attempt to produce input sequences that trigger these paths. Unfortunately, however, the EFSM might have infeasible paths and the problem of determining whether a path is feasible is generally undecidable. This paper describes an approach in which a fitness function is used to estimate how easy it is to find an input sequence to trigger a given path through an EFSM. Such a fitness function could be used in a search-based approach in which we search for a path with good fitness that achieves a test objective, such as executing a particular transition, and then search for an input sequence that triggers the path. If this second search fails then we search for another path with good fitness and repeat the process. We give a computationally inexpensive approach (fitness function) that estimates the feasibility of a path. In order to evaluate this fitness function we compared the fitness of a path with the ease with which an input sequence can be produced using search to trigger the path and we used random sampling in order to estimate this. The empirical evidence suggests that a reasonably good correlation (0.72 and 0.62) exists between the fitness of a path, produced using the proposed fitness function, and an estimate of the ease with which we can randomly generate an input sequence to trigger the path

    Generating a checking sequence with a minimum number of reset transitions

    Get PDF
    Given a finite state machine M, a checking sequence is an input sequence that is guaranteed to lead to a failure if the implementation under test is faulty and has no more states than M. There has been much interest in the automated generation of a short checking sequence from a finite state machine. However, such sequences can contain reset transitions whose use can adversely affect both the cost of applying the checking sequence and the effectiveness of the checking sequence. Thus, we sometimes want a checking sequence with a minimum number of reset transitions rather than a shortest checking sequence. This paper describes a new algorithm for generating a checking sequence, based on a distinguishing sequence, that minimises the number of reset transitions used.This work was supported in part by Leverhulme Trust grant number F/00275/D, Testing State Based Systems, Natural Sciences and Engineering Research Council (NSERC) of Canada grant number RGPIN 976, and Engineering and Physical Sciences Research Council grant number GR/R43150, Formal Methods and Testing (FORTEST)

    Specification of Timed EFSM Fault Models in SDL

    No full text
    Abstract. In this paper, we apply our timing fault modeling strategy to writing formal specifications for communication protocols. Using the formal language of Specification and Description Language (SDL), we specify the Controller process of rail-road crossing system, a popular benchmark for real-time systems. Our extended finite state machine (EFSM) model has the capability of representing a class of timing faults, which otherwise may not be detected in an IUT. Hit-or-Jump algorithm is applied to the SDL specification based on our EFSM model to generate a test sequence that can detect these timing faults. This application of fault modeling into SDL specification ensures the synchronization among the timing constraints of different processes, and enables generation of portable test sequences since they can be easily represented in other formal languages such as TTCN or MSC

    Separating sequence overlap for automated test sequence generation

    Get PDF
    Finite state machines have been used to model a number of classes of system and there has thus been much interest in the automatic generation of test sequences from finite state machines. Many finite state machine based test techniques utilize sequences that check the final states of transitions, the most general such sequence being a separating sequence: an input sequence that distinguishes between two states of an FSM. When using such techniques the test sequence length can be reduced by utilizing overlap. This paper investigates overlap for separating sequences and shows how this can be incorporated into test sequence generation
    corecore